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The paper is a survey of results in the model theory of abelian groups, dealing 
with two sorts of problems: finding invariants which classify groups up to 
L~-equivalence; and determining whether certain classes of groups are defin- 
able in L~K. 

Our aim in this paper is to survey the model theory of abelian groups with 

emphasis on infinitary model theory and on the interesting role which set theory 

has come to play in this subject. Rather than give a comprehensive account of 

results, we shall present a sampling which illustrates the types of results known 

and the methods used in their proofs. We shall deal with two types of problems, 

as follows. Let ~4 be a class of abelian groups. The definability problem asks: is ,,d 

definable in L~,, where h and K are cardinals or oo? If M is definable in L~, the 

classification problems asks for a characterization of the L~,-equivalence classes 

of ~. 

Throughout this paper "group"  will mean abelian group; Q denotes the 

additive group of the rationals; and Z denotes the additive group of the integers. 

Throughout,  K and h will be used to denote infinite cardinals; and [A [ denotes 

the cardinality of A. Also A K (respectively A ~K)) denotes the direct product 

(respectively, direct sum) of K copies of the group A. The notation A ---| 

means that the groups A and A '  are L~.-equivalent, i.e., they satisfy the same 

sentences of L~,. 

1. Classification 

The work of W. Szmielew [17] provides a complete solution to the classifica- 

tion problem for finitary logic. That is, Szmielew gave a complete set of 
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invar iants  for  the relat ion of e l emen ta ry  equivalence  of groups.  T o  save space we 

shall not s tate her  result in full, but  in o rder  to indicate its charac te r  we shall 

descr ibe  the Szmielew invariants  for  torsion groups.  

Given  a g roup  A and a pr ime p we define p ~A for  any ordinal  v by induction 

on v. Let  p ~  p ~ * I A = { p a : a E p ~ A } ;  and if o- is a limit ordinal,  

p " A  = f")v<,,p "A. Also define p " A  [p] = {a E p " A  : pa = 0}. For  any t = (p, v), 

let A, =p"A[p]/p"+IA[p] .  For  any g roup  B and any cardinal  K, let rk~(B)  

deno te  the m i n i m u m  of K and the rank of B. (If pB = 0 - -e .g .  if B = A , - - t h e n  B 

is natural ly  a vec tor  space  over  the field of o rder  p and the rank of B is the same 

as the d imens ion  of B as a vec tor  space.)  

THEOREM 1.1 (Szmielew). I f  A and A ' are torsion groups, then A is elemen- 

tarily equivalent to B if and only if: 

i) rk~(A, )  = rk~(A' ,)  for all t = (p, n), n E to; 

ii) rk~p"A [p] = rk~p"A'[p] for all n E to. 

(See E k l o f - F i s h e r  [8] for  a different p roof  of Szmielew's  results as well as 

o the r  results in the finitary mode l  theory  of groups.)  

For  infinitary languages,  results are m o r e  f ragmenta ry .  Let  gr be  the class of  

torsion groups,  i.e. the class of  groups  which are models  of the sen tence  

Vx Vnx = 0 .  
n g O  

Since ~- is definable in L ~,~ it is na tura l  to ask for  its equiva lence  classes with 

respec t  to L ~,~ or, more  general ly,  L,~. The  answer  is p rov ided  by the following 

result. 

THEOREM 1.2 (Ba rwi se -Ek lo f  [2]). Let A be a regular cardinal, and let 

A ,  A ' E ~T. Then A =-,~ A ' if and only if 

i) r k ~ ( A , ) = r k , ( A ' , ) f o r a l l t = ( p , ~ ) ,  v < A ;  

ii) rk~(p~A [p]) = rk~(pVA'[p] )  for all p and all t, < A. 

The  p roof  uses the back-and- for th  cri terion for  L , , - e q u i v a l e n c e  and an 

extension of the me thods  used to p rove  U l m ' s  Theo rem.  (See Barwise  [1] for  an 

exposi t ion of the proof . )  In fact U l m ' s  T h e o r e m  can be r ecovered  f rom the 

s t a t emen t  of T h e o r e m  1.2 (with A = to1) by applying Scot t ' s  T h e o r e m :  

ULM'S THEOREM 1.3. I r A  and A ' are countab le  torsion groups then A ~ A ' if 

and only if 

i) r k ( A , )  = rk(A' , )  for all t = (p, v), v < to1; 

ii) rkpVA [p] = rkp~A'[p] for all p and all v < to1. 
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A n y  group  A can be wri t ten as A = A,  �9 Au, where  Au is divisible and A,  has 

no non-zero  divisible subgroups .  Since divisible g roups  are direct  sums of copies 

of Q and Z(p~), the p - p r i m a r y  par t  of Q/Z,  their  s t ructure  is t ransparent .  For  

reduced groups,  i.e. g roups  A such that  Au = {0}, par t  (ii) of T h e o r e m s  1.2 and 

1.3 is unneeded .  Also if the p-length of A (i.e. the least p. such that  

p~A = p~+lA, or the least p. such that  p~A = A~) is => h and  the same  is t rue  

for  A ', then (ii) is unnecessary ;  indeed in that  case rk ,  ( p " A )  = K = rk ,  ( p " A )  for  

all v < h .  

T h e o r e m  1.2 can be genera l ized  to mixed groups  of tors ion-f ree  rank  one 

using results of Meg ibben  [13] on extending  U l m ' s  T h e o r e m .  

Before  giving a classification t h e o r e m  for  a class def ined in L~, where  K -> to1 

we need  to m a k e  some  group- theore t i c  definitions. A group  A is called 

completely decomposable if it is a direct sum of rank one  groups  (see Fuchs [10], 

Ch. XII I ) .  The re  is a comple te  set of invar iants  for  comple te ly  d e c o m p o s a b l e  

groups.  In o rde r  to descr ibe  the invariants ,  let us first consider  the rank  one  

groups.  These  are e i ther  torsion or  tors ion-free.  The  torsion rank one  groups  are 

simply the cyclic groups,  Z(p"), of p r ime  p o w e r  order ,  or  the divisible groups  

Z (p~). 
If A is any g roup  and a is a non-zero  e l emen t  of  A, let x(a), the characteristic 

of a, be  the sequence  (kl, k 2 , . . . )  where  k, is the  largest  n E to such that  p7 

divides a in A, if it exists, or  ki = ~ otherwise.  (Here  p~ is the i - th pr ime.)  If A is 

tors ion-free ,  let (a)., the pure closure of (a) in A, be the subgroup  {~a U A In 

divides a in A}. If A has rank  one then obviously Ca).  = A, A is i somorphic  to a 

subgroup  of Q, and  x(a)  de te rmines  A up to i somorphism.  H o w e v e r  A does  not 

de t e rmine  x(a)  uniquely.  For  example ,  if A = Z, X(1) = (0,0, �9 �9 �9 0, .  �9 �9 ), X(2) = 

( 1 , 0 , . . . 0 ) ,  X (84 )=  (2, 1,0, 1 , 0 , . . . 0 , . - . ) ,  etc. We  can define an equiva lence  

relat ion on character is t ics  as follows. If X = (k~, k 2 , - . .  ) and X ' =  (k~, k~ ' , - . .  ) 

then X is equivalent to X' if and only if k~ = k'i for  all but  finitely m a n y  i and if 

k, ~ k'~ then k~ and k'~ are both  finite. An  equiva lence  class of characteris t ics  will 

be  called a ( tors ion-free)  type. It is not hard  to see that  there  is a one -one  

c o r r e spondence  be tween  tors ion-f ree  rank one  groups  and tors ion-f ree  types.  

W h e r e  convenien t  we shall confuse  character is t ics  with their  equiva lence  classes. 

The  relat ion X => X' if and only if k~ _-> k', for  all i induces a part ial  order ing  on 

the set of types.  If A is any g roup  and t is any tors ion-f ree  type,  define 

A (t) = {a E A I a is tors ion-f ree  and X ( a )  => t} and A *(t) = {a E A I a is torsion-  

f ree  and x (a )>t} .  Then  these are subgroups  of A - - w e  include 0 by 

c o n v e n t i o n - - a n d  we define A, = A (t)/A *(t). 
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THEOREM 1.4. (Baer). If  A is a completely decomposable group--say A = 

( ~ ,  R, where R, is rank one of type tr-then A, ~- (~{R, I ti = t}. Hence if A and A ' 

are completely decomposable, A ~ -A '  if and only if r k ( A , ) =  rk (A',) for all 

torsion-free types t. 

A group A is called K-separable if every subset of A of cardinality < r is 

contained in a completely decomposable direct summand of A of rank < x. The 

problem with this notion from a logical point of view is that it is not obvious that 

the class, b~ of K-separable groups forms an L=.-elementary class. (We shall 

consider this question in section 2). So let us define a group A to be weakly 

K-separable if every subset of A of cardinality < K is contained in a completely 

decomposable subgroup B of rank < K such that B is K-pure in A,  i.e. B is a 

direct summand of C whenever B C C C A and C/B has rank < K. Then the 

class, gtV',, of weakly K-separable groups is easily seen to be definable in L ~+,. 

Let ~ = { t l t = ( p , n ) ,  p prime, n ~ t o } t 0 { t [ t  is a torsion-free type}. The 

following generalizes results in Eklof [5]. The restriction to uncountable K is 

only for convenience. 

THEOREM 1.5. Let K ~ (3.) 1. I f  A,  A ' E ~ then the following are equivalent: 

1) A ---| A ' ;  

2) A = - . . A ' ;  

3) i) rkK(A,)=rk . (A ' , )  for alltE~-~, 

ii) rk.p~A [p] = rk.p~A'[p] for all primes p. 

PROOF. (1) => (2) is obvious; (2) => (3) is true because the invariants can be 

described in the language L K.. We prove (3) ~ (1) by defining a non-empty set .r 

of "partial isomorphisms" from A to A '  (i.e. isomorphisms f:  B -~ B '  where B 

(respectively B')  is a subgroup of A (respectively A'))  such that for any f E .r 

and any subset X of A (respectively A' )  of cardinality < x there exists f i e  .r 

such that f C_ [ and X _C dom (f) (respectively X C_ rge(f) )  (cf. Calais [4] or 

Benda [3]). We may assume that A and A '  are reduced since the invariants 

rk.p~A [p] and rk. (A~) (where to = type of Q) determine the structure of the 

divisible part of A (which is a definable subgroup since K _>-- tol: Cf. Theorem 2.2). 

Hence we are interested only in the invariants rkK (A,) where t E ~ '  = ~ - {to}. 

Let ~ = {t E ~ ' :  rk . (A,)  < K} and for t E ~, let h, = rk (A,) = rk (A',). Let ~r be 

the set of all partial isomorphisms f:  B---~B' such that B is completely 

decomposable, I B [ < K, and B (respectively B')  is K-pure in A (respectively A ') 

and such that 
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(*) for all t E ~ ,  if rk(B,)=A, then ( B ( t ) + A * ( t ) ) / A * ( t ) = A ,  

and (B'(t)+ A'*(t)) /A'*(t)= A;. 

(If t = (p, n) let A (t) = p"A [p] and A *(t) = p"+tA [p] so that A, = A (t)/A *(t), 
as in the torsion-free case.) Condition (*) implies that there is no pure subgroup 

of A (respectively A ') of the form B @ R (respectively B ' @  R ) where R is rank 

one of type t. 

Let [ E #. The symmetry of the situation means that it is sufficient to prove 

that if X is a subset of A of cardinality < K, then there exists [ E # with jr C [ 

and X C dom(D.  Since A is weakly K-separable there exists a completely 

decomposable K-pure subgroup Co of A of cardinality < K containing B tO X. 

Let ~ o = { t E ~ : r k ( C , ) =  A,}. For each t@~0,  choose a subset Z, of A( t )  of 

cardinality A, which is a set of representatives for the elements of A, = 

A (t)/A *(t). Note that 

A , < K  
tE~o 

since I Col < K. Hence there exists a completely decomposable K-pure C~ of 

cardinality < K and containing Co U L.J {Z,: t E ~o}. Say C1 = Co@ @ , ~ R ,  

where each R, is rank one (torsion-free) of type t, E Z". (Here we use the fact 

that Co is K-pure in A and that a direct summand of a completely decomposable 

group is completely decomposable; see Fuchs [9, theor. 18.1], and Fuchs [10, 

theor. 86.7].) Let I = {i E I I t, E ~o} and let C = Co@@,~rR, and write C1 = 

C'@D. Now for t E ~o, ( C~( t ) + A *(t ))/A *( t ) = A, by construction, and hence 

(C ( t ) +  A *(t))/A *(t)= A, since D, = 0. Thus C7 satisfies (*). 

Since B is K-pure in A, C'= B @ / 3  where, say, /3 = @ , ~ z , R ( t )  ~,), where 

R (t) is the rank one group of type t. To prove that f extends to a function f E .9 

with X _C dom (f) it suffices to prove that there is an extension C"= B'@ B' of 

B '  which is completely decomposable and K-pure in A '  and satisfies (*) such 

that /3  ---/3'. But this follows--by means of a construction like that above- - f rom 

the hypothesis that r k , ( A , ) =  rkK (A',) and from the condition (*) which implies 

that either rk, (B , )<  rkK (A,) or o', = 0. The latter ensures that if we need copies 

of R(t)  in /~', then we can certainly produce them since rk.(B',)< rk~(A',). �9 

COROLLARY 1.6. Every weakly K-separable group is L~-equivalent to a 
completely decomposable group. 

PROOF. Let A ~ ~V.. We may assume A is reduced. Let A '  = ( ~ , ~ ,  R~,> 

where R, is rank one of type t and A, = rk~(A,). Then A =| �9 
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The following gives some information on the existence of groups which are 

L| to completely decomposable groups but which are not com- 

pletely decomposable. The proof is based on a generalization of the construction 

given in Eklof [6]. 

THEOREM 1.7. Let K = 1~I. for any n < to. I f  f is a function from ~ '  to the set of 

cardinals <= K satisfying either 

i) f ( t )  = K for some torsion-free t E .~"; or 

ii) for some p, f((p, n)) = K for arbitrarily large n, 

then there exists A ~ ~r of cardinality K such that A is not completely decomposa- 

ble and r k . ( A , ) =  f ( t )  for all t E;~' .  

Using an idea due to Gregory [11] (see Eklof [6] for more details) we can 

generalize Theorem 1.7 under an additional set-theoretic hypothesis. 

THEOREM 1.8 ( V = L ). I f  x is regular and not weakly compact then Theorem 

1.7 is true for K. 

On the other hand, Shelah has proved the following results. (For (i) see Shelah 

[16].) 

THEOREM 1.9 (Shelah). 

i) I f  K is singular or weakly-compact and A is weakly K-separable and of 

cardir~ality r then A is completely-decomposable. 

ii) I f  it is consistent with Z F C  that there exists a supercompact cardinal, then it 

is consistent with Z F C  that every weakly-2M~ group is completely 

decomposable. 

It is open whether for K = ~.+1 it is provable in ZFC that there exists a weakly 

K-separable group of cardinality K which is L| to a completely 

decomposable group but is not completely decomposable. 

It would also be interesting to obtain classification theorems for L=.- 

equivalence (where K => too for classes of non-separable groups which arise in 

nature, for example, for if, the class of torsion groups or for natural subclasses 

of ~. 

2. Definability 

We shall consider the definability problem for some of the classes considered 

in section 1. First, let ~ be the class of reduced groups. The following is proved 

in Barwise-Eklof [2] as a consequence of Theorem 1.2. 
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THEOREM 2.1. ~ n J- (i.e. the class of reduced torsion groups) is not definable 

in L=,. 

On the other hand we have the following: 

THEOREM 2.2. 

i) ~ is closed under L=~-equivalence, i.e. if A -| B then A ~ ~ if and only if 

B E ~ .  

ii) The class of torsion-[ree reduced groups is definable by a sentence of L ....  

iii) ~ is definable by a sentence of L .. . .  . 

PROOF. 

i) Suppose A - - - ~ B .  If A is not reduced then A contains a countable 

non-zero divisible subgroup A '. Since A -| B there exists a non-empty set ~ of 

partial isomorphisms from A to B such that for every f E 5~ and every a E A 

(respectively b ~ B)  there exists f E 5 ~ with f C_ t and a ~ dom (f) (respectively 

b E rge (f)). By induction we can define a chain {f. I n E to} of elements of 5 ~ such 

that f,  contains the first n elements of A '  (in some fixed well-ordering of type 

to). Then U f, is an isomorphism of A '  with a submodule of B. Hence B is not 

reduced. 

ii) In a torsion-free group division is unique, and hence a torsion-free group 

is reduced if and only if no non-zero element is divisible by all n ~ 0, if and only if 

the group is a model of 

V x [ x ~  O..-~ V V y ( n y ~  

iii) A group A is reduced if and only if it does not contain a copy of Q or 

Z ( p  =) for some p. Since these are countable groups, it is clear that this condition 

is expressible as a sentence of L . . . .  . �9 

Our main interest is in the definability of the class, 9~ of K-separable groups. 

The difficulty in expressing the property of being K-separable is in talking about 

direct summands of arbitrarily large groups. We begin with the case of 

to-separable groups--usually simply called separable groups. 

THEOREM 2.3. 

i) 5e~ n ~- (i.e. the class of separable torsion groups) is definable by a sentence 

of L .. . .  

ii) 6e~ is not definable in L~,. 

PROOF. 

i) It suffices to consider p-primary groups since a torsion group is the direct 
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sum of p-primary groups, where p ranges over the primes. It is a standard result 

of group theory that a reduced p -group  A is separable if and only if A does not 

have elements of infinite height, i.e. p ' A  = {0}. Since a divisible group is 

obviously separable, an arbitrary p-group is separable if and only if A satisfies 

p~'A = p '+~A (in which case p~'A = Ad) ,  i.e. A is a model of 

ii) There is a subgroup H of Z ~ which is not separable (cf. Fuchs [10], p. 122, 

Ex. 3). Now Z" is Nl-free, i.e. every countable subgroup is free. Hence H is 

Na-free and by a result of Kueker  (see Kueker  [12] or Barwise [1]) H is 

L~-equiva len t  to a free group. Since a free group is separable, the desired result 

follows. �9 

For uncountable r we have the following observation. 

THEOREM 2.4. For any r >= to1, 5e. is definable in L| r ~t/'~ = 5D.. 

PROOF. The implication ( ~ ) is obvious from the remarks in section 1. For 

the converse, suppose 5e. is definable by the sentence 0 of L~.. We must prove 

that if A E ~r then A ~ 5r By Corollary 1.6 there is a completely decomposa- 

ble group B such that A ---| B. But then since B obviously belongs to ~., B ~ O, 

so A ~ 0  and A belongs to 5r also. �9 

In order  to obtain negative results for the case r => to1 we shall assume the 

Axiom of Constructibility (V = L)  and make use of Shelah's result on the 

Whitehead problem. 

THEOREM 2.5 (Shelah [15]). ( V  = L ). I r A  is not free then there exists a short 

exact  sequence 0 ~ Z ~ A ' --~ A ~ 0 which does not split. 

We also make use of a result of Gregory [11]. A group A is called K-free if 

every subgroup of A of cardinality < r is free. 

THEOREM 2.6 (Gregory). ( V  = L) .  For any regular r which is not weak ly -  

compact  there exists A E ~ such that A has cardinality r and A is r -free but A is 

not free. 

LEMMA 2.7 (Mekler). I f  0 ~ Z ~ A '  ~ A ~ 0 is exact  and  A E ~r and A 

is K-free, then A ' E  ~162 and A '  is r- free.  I f  the sequence does not split, then 

A ' ~  fe~. 

PROOF. It suffices to prove that if B is a r -pure ,  free subgroup of A then 

7r-l(B) is a r -pure ,  free subgroup of A' .  Now 0--~ Z---~ 7r-~(B)---~ B -+0  is exact 
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so, since B is free, the sequence splits and ~r - l (B)~  B O Z  is free. If l r - ' ( B ) C  

C C_ A and C/Tr-1(B) has rank < K then zr(C)/B has rank < K. Since B is 

K-pure in A, 7r(C)/B is free so, since zr induces an isomorphism of C/Ir-I(B) 

onto 7r(C)/B, 7r(C)/B is free. Therefore  A '  is weakly K-separable. If the 

sequence does not split, then tz (Z) is not a direct summand of A '. But if A '  E ~ ,  

then /z(Z) is contained in a direct summand B of A which is free and 

finitely-generated. Since B//~(Z) is torsion-free, the fundamental theorem of 

abelian groups implies that B/tz (Z) is free. But then p~ (Z) is a direct summand of 

B and hence of A, a contradiction. �9 

THEOREM 2.8 ( V = L ). For any infinite r, 6e, is not definable in L|174 

PROOF. It Suffices to show that for arbitrarily large K there exist groups A '  

and A" such that A ' - = ,  A", A"  E 5% but A '  f~ 6e~. (Note that if A =< r then 

5e. C b%). Let A be as in Theorem 2.6. Then by Theorem 2.5 there is a short 

exact sequence O---~Z--~A'--~A---~O which does rmt split. By Lemma 2.7 

A '  E ~r and A '  is K-free but A '  ~ 5e.. Let A"  be the free group of rank r. By 

Theorem 1.5, A '  -= ~ A "  �9 

On the other hand, if it is consistent with ZFC that there exists a strongly 

compact cardinal then it is consistent with ZFC that Theorem 2.8 is false. Before 

proving this we give a proof of a result of Mekler [14]. 

THEOREM 2.9 (Mekler). Let K be a strongly compact cardinal. Let B be a 

K-pure subgroup of A such that B is a direct sum of groups of cardinality < r. 

Then B is a direct summand of A. 

PROOF. Say B =  ~ ) ~ , B ,  where IB, I<K. Let S =  I,.J,~IB, Then every 

element of B can be written as a linear combination of elements of S in < K 

different ways. (We consider only linear combinations of distinct elements where 

all the coefficients are non-zero.) Let L be the language consisting of a binary 

function symbol + ,  a constant symbol Ca for each element a ~ A, and two unary 

predicate symbols U, V. Let T be a set of sentences of L , ,  consisting of: the 

diagram of A ; a.sentence which says that the universe equals ( U ) O  V ((U) is 

the subgroup generated by U); the sentence U(cb) for each b ~ S; and for each 

b ~ B a sentence, 0b, which says that if cb is a linear combination of elements of 

U then these elements are in S. (The sentences 0b are the only infinitary 

sentences in T; and 0b E L** because of the observation above.) Since B is 

K-pure in A, every subset, T', of T of cardinality < r has a model. (Indeed T'  

has a model A '  where B C_ A'_C A and U = S.) Therefore  T has a model. 

Hence A C_ C where C = (U)~)  V and S C_ U. Now B is a direct summand of 
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(U); indeed ,  because  of  the  sen tences  &, ( U ) =  (S)•(U-S)= B~)(U-S). 
Then  A = B ~ ) ( A  n ( ( U  - s)ED v ) ) .  �9 

THEOREM 2.10. I f  there exists a strongly compact  cardinal, K, then for any 

cardinal A, 6eA is definable in L | 

PROOF. I n d e e d  if p = max {K, )t} then ~ is def inable  by a sen tence  ~b of L| 

Let  ~ be  the  sen tence  which says that  every  set of ca rd ina l i ty  < h is con ta ined  in 

a c o m p l e t e l y - d e c o m p o s a b l e  s u b g r o u p  of  ca rd ina l i ty  < h which is K-pure  in the  

whole  group.  Since a comp le t e ly  d e c o m p o s a b l e  g roup  is a d i rec t  sum of 

coun t ab l e  groups ,  a c o m p l e t e l y - d e c o m p o s a b l e  subg roup  which is r - p u r e  in a 

g roup  is in fact a d i rec t  s u m m a n d  by T h e o r e m  2.9. �9 

W e  do not  know i f - - f o r  e x a m p l e - - i t  is poss ib le  to p rove  in Z F C  that  ~ 1  is not  

def inable  in L~o,,. To  p rove  this it is necessary  by T h e o r e m  2.4 to show that  

~4/'~,, ~ 6 e .  The  fol lowing result ,  which ex tends  an obse rva t ion  of M e k l e r ' s  abou t  

She lah ' s  resul t  on the  W h i t e h e a d  p r o b l e m ,  indica tes  that  to p rove  o/r ~ 5e~,~ one  

shou ld  look to g roups  of ca rd ina l i ty  _-> 2 "~ (See Ek lo f  [7] for  a p roof ;  M A  stands  

for  M a r t i n ' s  A x i o m . )  

THEOREM 2.11 (MA).  I f  A E ~162 1, A is torsion-free and homogeneous (i.e. all 

elements o f  A are o f  the same type) and I A [<2"o, then A ~ b~ 

By She l ah ' s  resul t  ( T h e o r e m  1.9 (ii)), for  K = 2 '% it is cons is ten t  with Z F C  that  

b~ is def inable  in L~K (assuming the cons is tency of the  ex is tence  of a supe rcom-  

pac t  cardinal ) .  
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