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INFINITARY MODEL THEORY
OF ABELIAN GROUPS

BY
PAUL C. EKLOF'

ABSTRACT

The paper is a survey of results in the model theory of abelian groups, dealing
with two sorts of problems: finding invariants which classify groups up to
L,..-equivalence; and determining whether certain classes of groups are defin-
able in L,..

Our aim in this paper is to survey the model theory of abelian groups with
emphasis on infinitary model theory and on the interesting role which set theory
has come to play in this subject. Rather than give a comprehensive account of
results, we shall present a sampling which illustrates the types of results known
and the methods used in their proofs. We shall deal with two types of problems,
as follows. Let & be a class of abelian groups. The definability problem asks: is &
definable in L,,, where A and « are cardinals or ©? If o is definable in L,,, the
classification problems asks for a characterization of the L,.-equivalence classes
of .

Throughout this paper “group” will mean abelian group; Q denotes the
additive group of the rationals; and Z denotes the additive group of the integers.
Throughout, k and A will be used to denote infinite cardinals; and | A | denotes
the cardinality of A. Also A" (respectively A®’) denotes the direct product
(respectively, direct sum) of « copies of the group A. The notation A =, A’
means that the groups A and A’ are L..-equivalent, i.e., they satisfy the same
sentences of L....

1. Classification

The work of W. Szmielew [17] provides a complete solution to the classifica-
tion problem for finitary logic. That is, Szmielew gave a complete set of
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invariants for the relation of elementary equivalence of groups. To save space we
shall not state her result in full, but in order to indicate its character we shall
describe the Szmielew invariants for torsion groups.

Given a group A and a prime p we define p*A for any ordinal » by induction
on v. Let p°’A=A; p""'A ={pa:aEp*A}; and if ¢ is a limit ordinal,
p°A = ,.,p"A. Also define p"A[p]={a € p*A: pa = 0}. For any t = (p, v),
let A, =p"A[p]/p*"'A[p]. For any group B and any cardinal «, let rk,.(B)
denote the minimum of « and the rank of B. (If pB = 0—e.g. if B = A,—then B
is naturally a vector space over the field of order p and the rank of B is the same
as the dimension of B as a vector space.)

THEOREM 1.1 (Szmielew). If A and A’ are torsion groups, then A is elemen-
tarily equivalent to B if and only if:

i) 1k.(A)=1k,(A}) for all t =(p,n), n € w;

ii) rk.p"A[p]=r1k.p"A'[p] for all n € w.

(See Eklof-Fisher [8] for a different proof of Szmielew’s results as well as
other results in the finitary model theory of groups.)

For infinitary languages, results are more fragmentary. Let  be the class of
torsion groups, i.e. the class of groups which are models of the sentence

Vx Vnx=0.
n#0
Since 7 is definable in L, it is natural to ask for its equivalence classes with
respect to L. or, more generally, L ,.. The answer is provided by the following
result.

THEOREM 1.2 (Barwise-Eklof [2]). Let A be a regular cardinal, and let
A,A'€J. Then A =,,A’ if and only if

i) rk.(A)=r1k.(A}) for all t =(p,v), v<A;

ii) rk,(p*A[p]) =1k.(p*A'[p]) for all p and all v < A.

The proof uses the back-and-forth criterion for L,.-equivalence and an
extension of the methods used to prove Ulm’s Theorem. (See Barwise [1] for an
exposition of the proof.) In fact Ulm’s Theorem can be recovered from the
statement of Theorem 1.2 (with A = w,) by applying Scott’s Theorem:

Urms THEOREM 1.3. If A and A’ are countable torsion groups then A = A’ if
and only if

i) rk(A)=r1k(A}) forallt=(p,v), v < wy;

ii) rkp*A[p]=r1kp*A’'[p] for all p and all v < w,.
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Any group A can be written as A = A, @ A, where A, is divisible and A, has
no non-zero divisible subgroups. Since divisible groups are direct sums of copies
of Q and Z(p™), the p-primary part of Q/Z, their structure is transparent. For
reduced groups, i.e. groups A such that A, = {0}, part (ii) of Theorems 1.2 and
1.3 is unneeded. Also if the p-length of A (i.e. the least u such that
p*A = p**'A, or the least u such that p*A = A;) is = X and the same is true
for A’, then (ii) is unnecessary; indeed in that case rk.(p*A) = « = rk.(p*A) for
all v <A,

Theorem 1.2 can be generalized to mixed groups of torsion-free rank one
using results of Megibben [13] on extending Ulm’s Theorem.

Before giving a classification theorem for a class defined in L,. where «k Z w,
we need to make some group-theoretic definitions. A group A is called
completely decomposable if it is a direct sum of rank one groups (see Fuchs [10],
Ch. XIII). There is a complete set of invariants for completely decomposable
groups. In order to describe the invariants, let us first consider the rank one
groups. These are either torsion or torsion-free, The torsion rank one groups are
simply the cyclic groups, Z(p"), of prime power order, or the divisible groups
Z(p®).

If A is any group and a is a non-zero element of A, let y(a), the characteristic
of a, be the sequence (ky, ko, ---) where k; is the largest n € @ such that p;
divides a in A, if it exists, or k; = « otherwise. (Here p; is the i-th prime.) If A is
torsion-free, let {(a),, the pure closure of (a) in A, be the subgroup {3a € A |n
divides a in A}. If A has rank one then obviously {a), = A, A is isomorphic to a
subgroup of Q, and y(a) determines A up to isomorphism. However A does not
determine y (a) uniquely. For example, if A =Z, x(1)=(0,0,---0,---), x(2) =
(1,0,---0), x(84)=(2,1,0,1,0,---0,---), etc. We can define an equivalence
relation on characteristics as follows. If y = (ky, k;,-++) and x'=(ki, k3, --*)
then y is equivalent to y' if and only if k; = k| for all but finitely many i and if
k;# kithen k; and k| are both finite. An equivalence class of characteristics will
be called a (torsion-free) type. It is not hard to see that there is a one-one
correspondence between torsion-free rank one groups and torsion-free types.
Where convenient we shall confuse characteristics with their equivalence classes.

The relation y = x'if and only if ki = k| for all i induces a partial ordering on
the set of types. If A is any group and ¢ is any torsion-free type, define
A(t)={a € Ala istorsion-free and x(a) = ¢t} and A *(¢t) ={a € A |a is torsion-
free and x(a)>t}. Then these are subgroups of A—we include 0 by
convention—and we define A, = A(t)/A*(t).
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TueoreM 1.4. (Baer). If A is a completely decomposable group—say A =
@i R; where R; is rank one of type t—then A, = ®{R.|t, = t}. Hence if A and A’
are completely decomposable, A = A’ if and only if tk(A,)=1k(A}) for all
torsion-free types t.

A group A is called «k-separable if every subset of A of cardinality <« is
contained in a completely decomposable direct summand of A of rank < «. The
problem with this notion from a logical point of view is that it is not obvious that
the class, &., of k-separable groups forms an L..-elementary class. (We shall
consider this question in section 2). So let us define a group A to be weakly
k -separable if every subset of A of cardinality < « is contained in a completely
decomposable subgroup B of rank < « such that B is k-pure in A, i.e. B is a
direct summand of C whenever BC C C A and C/B has rank < k. Then the
class, W., of weakly «-separable groups is easily seen to be definable in L ,+..

Let $={t|t=(p,n), p prime, n €Ew}U{t|t is a torsion-free type}. The
following generalizes results in Eklof [5]. The restriction to uncountable « is
only for convenience.

THEOREM 1.5. Letk Z w.. IfA, A’ € W, then the following are equivalent:
1) A=A
2) A=, A%
3) i) rk.(A) =1k (A) forallt€ T,
ii) rk.p“A[p] =rk.p“A’[p] for all primes p.

Proor. (1) = (2) is obvious; (2) = (3) is true because the invariants can be
described in the language L ... We prove (3) = (1) by defining a non-empty set .$
of “‘partial isomorphisms” from A to A’ (i.e. isomorphisms f: B — B’ where B
(respectively B’) is a subgroup of A (respectively A’)) such that for any f € $
and any subset X of A (respectively A’') of cardinality < « there exists fes
such that fCf and X Cdom (f) (respectively X C rge(f)) (cf. Calais [4] or
Benda [3]). We may assume that A and A’ are reduced since the invariants
tk.p“A[p] and rk.(A,) (where t,= type of Q) determine the structure of the
divisible part of A (which is a definable subgroup since k Z w;: cf. Theorem 2.2).
Hence we are interested only in the invariants rk, (A,) where t € ' = T —{t,}.
Let E={re "1k, (A)<«k}and fort €&, let A, =rk(A,)=r1k(A%). Let $ be
the set of all partial isomorphisms f: B -— B’ such that B is completely
decomposable, | B| < k, and B (respectively B') is k-pure in A (respectively A’)
and such that
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(x) forall t€@, if tk(B)=A then (B(t)+A*())/A*()=A,
and (B'(1)+ A™*(1))/A*(t)= A"

(Ift=(p,n)let A(t)=p"Alp]land A*(t)=p""'Afp]sothat A, = A(£)/A*(),
as in the torsion-free case.) Condition (*) implies that there is no pure subgroup
of A (respectively A’) of the form B @ R (respectively B'@® R) where R is rank
one of type t.

Let f € 4. The symmetry of the situation means that it is sufficient to prove
that if X is a subset of A of cardinality < «, then there exists f € $ with fC f
and X C dom(f). Since A is weakly k-separable there exists a completely
decomposable «-pure subgroup C, of A of cardinality < x containing B U X.
Let & ={t € &:rk(C)= A}. For each t € €, choose a subset Z, of A(t) of
cardinality A, which is a set of representatives for the elements of A, =
A(t)/A*(t). Note that

2A,<K

te@,

since | Co| < k. Hence there exists a completely decomposable «-pure C, of
cardinality <« and containing C,U U {Z,:t € E,}. Say C,= C,® @.-e, R
where each R; is rank one (torsion-free) of type t, € Z’. (Here we use the fact
that Co is k-pure in A and that a direct summand of a completely decomposable
group is completely decomposable; see Fuchs [9, theor. 18.1], and Fuchs [10,
theor. 86.7].) Let I={i € I|t, € €y} and let C = CU@@.E;R,- and write C, =
C@D. Now for t € €, (Ci(t)+ A*(1))/A*(t) = A, by construction, and hence
(C(t)+ A*(1))/A*(t)= A, since D, =0. Thus € satisfies (*).

Since B is k-pure in A, C = B@® B where, say, B = @,eg‘ R(£)“”, where
R(t) is the rank one group of type . To prove that f extends to a function f € $
with X C dom (f) it suffices to prove that there is an extension C’' = B’® B’ of
B’ which is completely decomposable and «-pure in A’ and satisfies (*) such
that B = B'. But this follows—by means of a construction like that above—from
the hypothesis that rk, (A,) = rk.(A) and from the condition (*) which implies
that either rk. (B,) <rk.(A,) or o, = 0. The latter ensures that if we need copies
of R(t) in B’, then we can certainly produce them since rk.(B}) <rk,(A}).H

CoroLLARY 1.6. Every weakly k-separable group is L..-equivalent to a
completely decomposable group.

Proor. Let A € W.. We may assume A is reduced. Let A'= @,eg' R
where R, is rank one of type ¢ and A, =1k, (A,). Then A =_,A". |
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The following gives some information on the existence of groups which are
L..-equivalent to completely decomposable groups but which are not com-
pletely decomposable. The proof is based on a generalization of the construction
given in Eklof [6].

THEOREM 1.7. Letk = N, for any n < w. If f is a function from £’ to the set of
cardinals = «k satisfying either

i)  f(t) = k for some torsion-free t € T'; or

ii) for some p, f((p, n)) = « for arbitrarily large n,
then there exists A € W, of cardinality k such that A is not completely decomposa -
ble and 1k.(A,)=f(t) forallt € T".

Using an idea due to Gregory [11] (see Eklof [6] for more details) we can
generalize Theorem 1.7 under an additional set-theoretic hypothesis.

THEOREM 1.8 (V = L). If « is regular and not weakly compact then Theorem
1.7 is true for .

On the other hand, Shelah has proved the following results. (For (i) see Shelah
[16])

THEOREM 1.9 (Shelah).

i) If k is singular or weakly-compact and A is weakly «-separable and of
cardinality k then A is completely-decomposable.

it) If it is consistent with ZFC that there exists a supercompact cardinal, then it
is consistent with ZFC that every weakly-2"-separable group is completely
decomposable.

It is open whether for k = N,,., it is provable in ZFC that there exists a weakly
x-separable group of cardinality « which is L..-equivalent to a completely
decomposable group but is not completely decomposable.

It would also be interesting to obtain classification theorems for L..-
equivalence (where k = w,;) for classes of non-separable groups which arise in
nature, for example, for 7, the class of torsion groups or for natural subclasses
of 7.

2. Definability

We shall consider the definability problem for some of the classes considered
in section 1. First, let & be the class of reduced groups. The following is proved
in Barwise-Eklof [2] as a consequence of Theorem 1.2.



Vol. 25, 1976 INFINITARY MODEL THEORY OF ABELIAN GROUPS 103

THEOREM 2.1. R N T (i.e. the class of reduced torsion groups) is not definable
in L.,

On the other hand we have the following:

THEOREM 2.2.

i) R isclosed under L..,-equivalence, i.e. if A =.., B then A € R if and only if
BE .

ii) The class of torsion-free reduced groups is definable by a sentence of L ..,..

iti) QR is definable by a sentence of L ...,

PRrOOF.

i) Suppose A =.,B. If A is not reduced then A contains a countable
non-zero divisible subgroup A'. Since A =.,, B there exists a non-empty set .$ of
partial isomorphisms from A to B such that for every fE€ # and every a € A
(respectively b € B) there exists f € $ with f C f and a € dom(f) (respectively
b € rge (f)). By induction we can define a chain {f, | n € w} of elements of # such
that f, contains the first n elements of A’ (in some fixed well-ordering of type
w). Then U f, is an isomorphism of A’ with a submodule of B. Hence B is not
reduced.

ii) In a torsion-free group division is unique, and hence a torsion-free group
is reduced if and only if no non-zero element is divisible by all n# 0, if and only if
the group is a model of

Vx [x;é 0— XOVy(ny% x)].

iii) A group A is reduced if and only if it does not contain a copy of Q or
Z(p~) for some p. Since these are countable groups, it is clear that this condition
is expressible as a sentence of L .,.,. [ ]

Our main interest is in the definability of the class, &,, of k-separable groups.
The difficulty in expressing the property of being k-separable is in talking about
direct summands of arbitrarily large groups. We begin with the case of
w-separable groups—usually simply called separable groups.

THEOREM 2.3.

i) %, NJT (ie. the class of separable torsion groups) is definable by a sentence
of L.
i) &, is not definable in L..,.

PROOF.
i) It suffices to consider p-primary groups since a torsion group is the direct
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sum of p-primary groups, where p ranges over the primes. It is a standard result
of group theory that a reduced p-group A is separable if and only if A does not
have elements of infinite height, i.e. p“A ={0}. Since a divisible group is
obviously separable, an arbitrary p-group is separable if and only if A satisfies
p“A =p“"'A (in which case p“A = Ay), i.e. A is a model of

Vil (A@y @y = 0) = 32(A @y @™y = ) atez = )|

ii) There is a subgroup H of Z* which is not separable (cf. Fuchs [10], p. 122,
Ex. 3). Now Z* is N;-free, i.e. every countable subgroup is free. Hence H is
N;-free and by a result of Kueker (see Kueker [12] or Barwise [1]) H is
L...-equivalent to a free group. Since a free group is separable, the desired result
follows. n

For uncountable k we have the following observation.

THEOREM 2.4. For any x Z w,, ¥, is definable in L... & W, =%..

Proor. The implication ( < ) is obvious from the remarks in section 1. For
the converse, suppose ¥, is definable by the sentence 6 of L... We must prove
that if A € W, then A € ¥.. By Corollary 1.6 there is a completely decomposa-
ble group B such that A =., B. But then since B obviously belongs to %, B =6,
so AF @ and A belongs to ¥, also. n

In order to obtain negative results for the case x 2 w, we shall assume the
Axiom of Constructibility (V = L) and make use of Shelah’s result on the
Whitehead problem.

THEOREM 2.5 (Shelah [15]). (V =L). If A is not free then there exists a short
exact sequence 0—>Z— A'—> A — 0 which does not split.

We also make use of a result of Gregory [11]. A group A is called «-free if
every subgroup of A of cardinality <« is free.

TueoreM 2.6 (Gregory). (V =L). For any regular k which is not weakly-
compact there exists A € W, such that A has cardinality k and A is k-free but A is
not free.

Lemma 2.7 (Mekler). If 0—>Z->A'>A—0isexact and A € W.and A
is k-free, then A’E W, and A' is k-free. If the sequence does not split, then
A'ES..

Proor. It suffices to prove that if B is a k-pure, free subgroup of A then
m'(B) is a k-pure, free subgroup of A’. Now 0—>Z— 7~ (B)— B — 0 is exact
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so, since B is free, the sequence splits and 7 '(B)= B@Z is free. If 7 Y(B)C
CCA and C/m"'(B) has rank <« then m(C)/B has rank < k. Since B is
k-pure in A, w(C)/B is free so, since 7 induces an isomorphism of C/7w'(B)
onto w(C)/B, w(C)/B is free. Therefore A’ is weakly «-separable. If the
sequence does not split, then u (Z) is not a direct summand of A’. Butif A'€ ¥,
then w(Z) is contained in a direct summand B of A which is free and
finitely-generated. Since B/u (Z) is torsion-free, the fundamental theorem of
abelian groups implies that B/u (Z) is free. But then wu (Z) is a direct summand of
B and hence of A, a contradiction. [ |

THEOREM 2.8 (V = L). For any infinite k, &, is not definable in L ...

Proor. It suffices to show that for arbitrarily large « there exist groups A’
and A” such that A'=., A", A"€ ¥, but A'& ¥,. (Note that if A = k then
. C &.). Let A be as in Theorem 2.6. Then by Theorem 2.5 there is a short
exact sequence 0 —>Z—> A'— A -0 which does not split. By Lemma 2.7
A'EW. and A’ is k-free but A’ & .. Let A" be the free group of rank . By
Theorem 1.5, A'=..A". [ ]

On the other hand, if it is consistent with ZFC that there exists a strongly
compact cardinal then it is consistent with ZFC that Theorem 2.8 is false. Before
proving this we give a proof of a result of Mekler [14].

THEOREM 2.9 (Mekler). Let k be a strongly compact cardinal. Let B be a
Kk -pure subgroup of A such that B is a direct sum of groups of cardinality < «.
Then B is a direct summand of A.

PrOOF. Say B = EB.»E,B.- where |B;|<«k. Let S= U,,B. Then every
element of B can be written as a linear combination of elements of S in <«
different ways. (We consider only linear combinations of distinct elements where
all the coeflicients are non-zero.) Let L be the language consisting of a binary
function symbol +, a constant symbol ¢, for each element a € A, and two unary
predicate symbols U, V. Let T be a set of sentences of L .. consisting of: the
diagram of A ; a.sentence which says that the universe equals (U@ V ((U) is
the subgroup generated by U); the sentence U(c,) for each b € S; and for each
b € B a sentence, 6,, which says that if ¢, is a linear combination of elements of
U then these elements are in S. (The sentences 6, are the only infinitary
sentences in T; and 6, € L.. because of the observation above.) Since B is
k-pure in A, every subset, T’, of T of cardinality < « has a model. (Indeed T’
has a model A’ where BC A'C A and U = 8.) Therefore T has a model.
Hence A C C where C=(U)YP V and § C U. Now B is a direct summand of
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(U); indeed, because of the sentences 8, (U)=(S)P(U - S)=BP(U - S).
Then A =BG A NKU-S)P V). [ |

THEOREM 2.10. If there exists a strongly compact cardinal, «, then for any
cardinal A, %, is definable in L ...

Proor. Indeed if p = max {k, A} then &%, is definable by a sentence ¢ of L.,.
Let ¢ be the sentence which says that every set of cardinality < A is contained in
a completely-decomposable subgroup of cardinality < A which is k-pure in the
whole group. Since a completely decomposable group is a direct sum of
countable groups, a completely-decomposable subgroup which is «-pure in a
group is in fact a direct summand by Theorem 2.9. |

We do not know if—for example—it is possible to prove in ZFC that &, is not
definable in L...,. To prove this it is necessary by Theorem 2.4 to show that
W., # Z... The following result, which extends an observation of Mekler’s about
Shelah’s result on the Whitehead problem, indicates that to prove W, # &., one
should look to groups of cardinality = 2"_(See Eklof [7] for a proof; MA stands
for Martin’s Axiom.)

THEOREM 2.11 (MA). IfA € W.,, A is torsion-free and homogeneous (i.e. all
elements of A are of the same type) and |A|<2", then A € &,,.

By Shelah’s result (Theorem 1.9 (ii)), for k = 2™ it is consistent with ZFC that
. is definable in L. (assuming the consistency of the existence of a supercom-
pact cardinal).
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